Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems
نویسندگان
چکیده
[1] Validations of the DeNitrification-DeComposition (DNDC) model against field data sets of trace gases (CH4, N2O, and NO) emitted from cropping systems in Japan, China, and Thailand were conducted. The model-simulated results were in agreement with seasonal N2O emissions from a lowland soil in Japan from 1995 to 2000 and seasonal CH4 emissions from rice fields in China, but failed to simulate N2O and NO emissions from an Andisol in Japan as well as NO emissions from the lowland soil. Seasonal CH4 emissions from rice cropping systems in Thailand were poorly simulated because of site-specific soil conditions and rice variety. For all of the simulated cases, the model satisfactorily simulated annual variations of greenhouse gas emissions from cropping systems and effects of land management. However, discrepancies existed between the modeled and observed seasonal patterns of CH4 and N2O emissions. By incorporating modifications based on the local soil properties and management, DNDC model could become a powerful tool for estimating greenhouse gas emissions from terrestrial ecosystems.
منابع مشابه
DNDC: A process-based model of greenhouse gas fluxes from agricultural soils
The high temporal and spatial variability of agricultural nitrous oxide (N2O) emissions from soil makes their measurement at regional or national scales impractical. Accordingly, robust process-based models are needed. Several detailed biochemical process-basedmodels of N-gas emissions have been developed in recent years to provide site-specific and regional scale estimates of N2O emissions. Am...
متن کاملAssessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years.
Assessments of the efficacy of mitigation of greenhouse gas (GHG) emissions from paddy rice systems have typically been analyzed based on field studies. Extrapolation of the mitigation potential of alternative management practices from field studies to a national scale may be enhanced by spatially explicit process models, like the DeNitrification and DeComposition (DNDC) model. Our objective wa...
متن کاملComparison of energy consumption and greenhouse gas emission footprint caused by agricultural products in greenhouses and open field in Iran
Decisions can be taken to increase energy efficiency and to mitigate the emissions to the environment by examining the energy audit and greenhouse gas (GHG) emissions footprint of crop production in different ways and in different regions, with comparable principles. In this study, energy consumption and energy indices of tomatoes production in four regions of Iran including East Azerbaijan...
متن کاملModelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China
Agricultural production plays an important role in affecting atmospheric greenhouse gas concentrations. Field measurements were conducted in Quzhou County, Hebei Province in the North China Plains to quantify carbon dioxide (CO2) and nitrous oxide (N2O) emissions from a winter wheat–maize rotation field, a common cropping system across the Chinese agricultural regions. The observed flux data in...
متن کاملModelling of methane emissions from rice-based production systems in India with the denitrification and decomposition model: Field validation and sensitivity analysis
The DNDC (DeNitrification and DeComposition) model was calibrated and tested against experimental data on CH4 emission from rice fields of Central Rice Research Institute, Cuttack, India. There was good agreement between the simulated and observed values of grain yield, total biomass, N uptake and seasonal CH4 emission. Overall, the model satisfactorily simulated the seasonal variations of CH4 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003